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Summary. The clustering around a cosmic string loop in an 

universe consisting, at pr esen t , of baryons and massive 

neutrinos has been calculated in 1 inear perturbation 

approximation. We pay attention mainly on the bias in the 

clustering. It has been shown that the biased clustering of 

baryons started Just after the decoupl i ng time; the 

clustering wi 11 form an object with structure of a core 

dominated by baryons in the inner region and a halo 

dominated by massive neutrinos in the outer region. The 

pr esen t I ength scale of the cores is about several decades 

UPC, depending on the rest mass of neutrinos. The rotation 

curves of such objects are remarkable flat. The amp1 i tudes 

of the rotation curves decreases with cosmic time. Comparing 

the observed rotation velocities with calculated results, it 

is found that galaxies would be formed in the period of 

redshift z Y 3 - IO. The maximum length scale of the bias is 

about the SCUllP as for clusters of galaxies. This result 

seems to be useful to explain the correlation between the 

features of rotation curves of cluster galaxies and the 

galaxy’s distance from the center of the cluster. 

K*Y words: cosmology - biased clustering - cosmic string - 

galaxy formation 
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1. Introduction 

Bias is an important topic in galaxy formation. However, 

in different articles, the word of bias has sometimes been 

used in different meaning. From direct I y observed phenomena, 

the bias means that the distribution of galaxies are 

overabundant in the regions of high density (White, 1988). 

For instance, the systematic growth of mass-to-light ratio, 

M/L, with the size of the objects shows that galaxies are 

overabundant relative to dark! matter. In rich clusters, 

galaxies are overabundant relative to the darl! matter by 

about a factor of 5. The mean mass densities given by 

galaxies found in groups, clusters and even supercl usters 

are always 1 ower than 1. On the other hand, the spatial 

geometry of the universe seems to be flat fi = 1 (Lob, 

1987). A common hypothesis made to determine the mean 

density of visible objects is that the distribution of al I 

matter is concentrated in or proportional to visible objects 

and that there does not exist a more uniform distribution of 

matter. Therefore, the requirement for fi to be equal to 1 

also imp1 ies that the darlc matter is not clustered 

obviously, at least, on scales of less than that of clusters 

of galaxies (Fang et al, 1982). 
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This result forces us to search for the fol 1 owing 

problem: how can such differnces in the distributions of 

baryons and dark matter come about ? Namely, why do the 

bar yon cluster obviously, especially on smal I er SCPI es, 

while the dark matter has up to now remained rather uniform 

on these scales ? These problems had been studied by us for 

a two component universe. It has been found that, in a two 

component universe, if the densities PIand p2, the Jeans 

1 engths 3\ 1J 
and A 

25 
of the two components satisfy the 

nequal i ties p1 cc p2 , llJc< %u , the developed 

nhomogeneties with scale less than ?j2J in the non-dominant 

component 1 are always of larger amplitude than those in the 

dominant component 2, regard1 ess of whether the initial 

perturbation is in 1 or in 2. This mechanism can, at least 

qua1 i tively, be used as a possible origin of the biased 

clustering. 

BY using the above-men t i on ed mechan i sm we show 

numerical 1 y that, in an universe consisting of massive 

neutrinos and baryons, the clustering of baryons on small 

seal es is always larger than that of neutrinos, regard1 ess 

of whether the initial perturbations exist in baryons or in 

neutrinos (Fang, et al. 1984) . This means that the 

clustering of baryons ,wil I be biased with respect to 

neutrinos. However, in this model, the baryonic density 
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perturbations on larger scales get to be nonlinear a.1 ways 

earlier than that on the smal ler scales. Therefore, it is 

stil I not quantatively enough to change the top-down 

clustering scenario, which is hard to reconcile with 

observations. This is a common difficulty in hot dark matter 

model . 

In order to overcome the above-mentioned difficulty, we 

discussed a model of the universe containing two types of 

dark matter, massive neutrinos as a dominant component and 

another type of more massive particles as non-dominant 

component , which ~1 ays as the seeds to form smal I seal e 

objects before the formation of large one. In this case 

there should be two types of small scale objects: one is 

related to the formation of large scale structure, while the 

other is not 1 inked with the large scale structure. These 

results already gave a pi ausible pit-ture on the clustering 

of quasars, especially on the difference between the 

clusterings of quasars with 1 arge-redshi f t and 

small-redshift (Chu and Fang, 1987). Comparing with cosmic 

string model , it can be found that the cosmic string just 

PI ays about the same role as that of non-dominant component 

of dark matters in the considered model. Therefore, the 

plausible results wil 1 also be maintained in a hot dark 

matter plus cosmic string universe. This is the motivation 
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to study the biased clustering problems in a hot dark matter 

plus cosmic string universe, namely, &e will still consider 

an universe containing massive neutrinos and baryons, while 

the cosmic strings play the role of primeval seeds for the 

density perturbations. 

The other reason to study this model is that massive 
, 

neutrino is stil 1 one of the most 1 ikely candidates of darK 

matter in the universe. The neutrions emitted from SN 19876 

seems to further strengthen the interest in the role of 

massive neutrino in the universe. Moreo6er, the cosmic 

string model with cold dark matter are unlikely to generate 

1 arge-seal e streaming velocities (Lynden-Eel 1 et al. 1988)) 

and the nonlinear halos accreted by the strings may overlap 

before the present . Al 1 of these difficulties al so 1 et 

peop I a to consider a hot darh matter plus cosmic string 

model (Bertschinger and Watts, 1988). 

2. Qualitative feature of clustering 

Let us consider a cosmic string loop with mass Me , 

rrrhich is surrounded by two components of matters I (baryons) 

and 2 (neutrinos). The. two components interact with each 

other only through gravitation. In a neutrino dominated 
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universe, after the decoupl ing between baryons and 

radiation, the mass densi ty ratio of baryons 
PI 

to massive 

neutrinos P3 is 

; N l.l*!u-*( C Vl~i/lUUCV)-‘( t/10/5). 
i 

c 1) 

where the- sum runs over all neutrino species and ?I0 = 

(*qJ?l& IdO denotes the number density ratio of baryons to 

photons. After the decoupl ing, the ratio of Jeans length <or 

free streaming length) of baryons a,, to massive neutrinos 

A 
ZJ 

is given by 

$ N U.85.10-2(,n,~30~V)3~2(~,o~5)-'~* (21 

where 1, J -($7r/Gfl)“2 and &,,-(u~~/Gj7s)1” are the Jeans 

lengths of components 1 and 2, respectively, and U; and u2 

being the corresponded velocity dispersions. Equations ( I) 

and (2) shows the system we should considered is 

PI 6: ~2~ h a 12~. (3) 

In this case there are following relevant time seal es 

with r espec t to a density perturbation of length scale 11 

two damping times are defined by 
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(4) 

and a growing (collapse) time is defined by 

1, e, (M+t 3GMs/13)-'~2 (5) 

where p = $‘, + ?a . The conditions for the growth of density 

perturbations in 1 and 2 are 

t,stdlt $<tdz (6) 

Therefore, when the clustering dominated by gravity of the 

string, i.e. ~-nGp ~3G;Ms/f, the clustered lengths of 

components 1 and 2 around the string M, are 

4 5 (X’M&~), 11 5 (~(;A$/u;); ( 7) 

When the clustering dominated by the self-gravity of the two 

components of matter or &&pz/3G/$/~3, the clustered 

lengths of 1 andd 2 are given by 

11 ? v,/(4rCp)? 12 2 “*/(4xcp)‘P (8) 

Considering condition (2)., we find from eqs.(7) and (8) that 

in both cases the clustered length scales of component 1 are 
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wider than that of component 2, namely, the clustering of 

baryons will be easier and more rapid than neutrinos. Even a 

significant clustering with scale of about A\3 can form in 

the non-dominant component 1, while not in the dominated 

component 2. This means the clustering of baryons will be 

biased with respect to massive neutrionss. 

3. Linear perturbation theory 

We now calculate the growth of density perturbations 

around a string loop in an expanding universe. The method 

used in this calculation is the same as usual 1 i near 

perturbation theory (Gilbert, 1966; Fang et al. 1984 ; 

Bertschinger and Watts, 1988). 

We assume that the universe is flat fi= 1. The present 

density of massive neutrinos is RY= 0.9 and baryons fit,= 

0.1. The universe became matter-dominated at redshift lt Zeq= 

2 xia4h1 . In this case the dimensionless conformal time is 

given by 

C t $1 

tzG n(t) 
d 

- = 3\(1 t k"" - 11 
(9) 
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where a.(t) is the cosmic scale factor normalized to unity at 

the present time, and, ’ 2 -I 111 ueq= l/(ltZcq), rat= &&, asp . 

The unperturbed distributions of baryons and neutrinos 

are described by the Boltzmann and the Fermi distributions, 

respectively, 

fl= Fi$&j~vkf(~)‘) 

12” = # &)~iCxp(~i t V’ 

( 10) 

< 11) 

where p:“’ and p:“’ are the unperturbed densities of baryons 

and neutrinos, respectively. g(3) is Reimann 5 function. The 

comoving velocities U,, are related to the Jeans 1 engths 

h ;I as 

UiO = (Gpjn’/*)j),i,, (12) 

The density perturbations in both components can be 

described by 

6it = ’ 
MS I 

e-“lkx( li - ~)tlXdU ( 13) 

where 
5 

are the perturbed distribution functions. It can be 

shown that, in 1 ineir approximation, the density 
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perturbations in baryons and in neutrinos satisfy the 

following equations (Fang et al. 1964; Bertzchinger and 

Watts, 1988) : 

Qik = 
i 

(q' Iu( I+ G/C' 
ItG,l)4(kXi((~ E))[lllhk + LM2k + Ci(4 01 ( 14) 

where F;, are the Fourier transform of the distribution 

functions fJ . x; is the free-streaming comovi ng distances 

between conformal time E’and 5 , name1 y 

( 15) 

where 

(tl = (~lr/Xlr)(p~)/p~))‘IZuz, 
( 16) 

Ltl = U.O74( Ml/m,) ( 17) 

and M,, is the rest mass of neutrinos in the unit of eU. The 

string loop is treated here as a point of mass MS . The 

accretion of each component by the string loop are described 

by functions G; in eq.(l4> defined as 

c = +g$$yk t>t.g; 
I 

i 4 fll& 
(18) 
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(7* = I_ gw < 19) 

k&T--’ 

where s eq = 1.24 is the conformal time of the universe 

beconxni ng matter-dominated. The clustering of baryons can 

only occur after the decoupling time, which is about the 

Same as 
5 ‘,P 60 We t&P G( to be zero when t< 5 . 

9. 

4. Numerical examples 

As an example we calculated the linear growth of density 

perturbations of baryons and neutrinos for sever al 

wavenumber s I!, For an easy comparison of our results with 

those obtained in the case of the universe consisting only 

cosmic strings and massive neutrinos but wi thou t baryons 

(Bertschinger and Watts, 1988), we also used In 5 as the 

integration variable and chose the starting point at \= lo-* 

The numerical resul to are given in Figs. 1 and 2, in which 

we take the ratio of baryonic Jeans length to neutrino’s 

free-streaming length as h,/j,= 0.0:. In fact, our results 

do not sensitively depend on this ratio as long as that it 

is much larger than 1. 

Fig.1 showed that the clustering in both baryons and 

neutrinos are no longer to be completely top-down scenario. 

The macximum of S h at present time occurs at the length scale 
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of about i/h =~e~/1.59, which is about the same as the scale 

of clusters of galaxies. Namely, the density perturbations 

with I ength scale of about the same as for cluster of 

gal l xies can became nonlinear earlier than that of 

perturbations with length scale as for superclusters. In the 

non1 inear stage the clustered objects will quickly be 

virial iced. Therefore, the above-mentioned length scale can 
. 

Just be used to explain why the configuration of objects 

with scale less than that of clusters of galaxies are often 

symmetrical or regular, while larger objects are always 

irregular (Fang and Yan, 1988). 

Fig. 1 also showed obviously that baryons cluster mor 8 

strong than neutrinos after the time of cey. When 5 >ceq 3 

the density perturbations for al 1 wavenumber k always 

satisfy the following relation 

(20) 

It can also be seen from Figs. 1 and 2 that for larger k, 

the correspond larger differences between ,k and &. s This 

means for smaller length scale of the clustering, correspond 

higher the ratio of the densities of baryons to neutrinos. 

This is just the biasing scenario. 
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Fig.2 plots the growth of density perturbations at the 

distances of x = 
-4 

10 G and 10 
-I 

Q’a from the cosmic 

strings. It shows that there is a remarkable up-jump in the 

clustering of baryonr at <es, namely after the Thomson drag 

time, the baryonic density perturbation will immediately 

overcome the density perturbation of neutrinos. This will 

lead to, in configurational space, a baryonic density around 
l 

the string I oop which overcomes the neutrino denri ty. 

Therefore, the clustering around a string loop will form an 

object with a core of baryons and a halo of neutrinos. We 

define the core radius rc as the distance from the string 

loop, at which the baryonic density is equal to the neutrino 

density 

ek0 = h(r,) (21) 

Fig.3 shows the evolution of the core radius rc against 

redshift. The maximum of radius for reasonable mass of 

string loops is not larger than about 100 Kpc, which is not 

strongly dependent upon the rest mass of neutrino. This is 

also consistent with the observed biased clustering. 
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5. Application and discussion 

In general, the results found from linear perturbation 

theory cannot be ditrectly compared with observations, 

bet ause the nonlinear collapse may change the clustering 

picture in the linear growth stage. However, the spherical 

co1 lapse ,model in an expanding universe showed that an 

accreted mass shell stops to expand and approaches a maximum 

radius &,x when the density perturbation implied by linear 

theory is 1.5 (Zel’dovich, 1970), namely, the linear model 

is a reasonable approximation for the clustering until the 

mass shell drops out from the Hubble flow. After the she1 1 

turns around, it collapses to achieve virialization, while 

the virialized radius r,,ir differs from r,, only by a factor 

of about 2 (Gunn, 1977; Shu, 1978) , 

rvir 2 rlnOc 12. ( 22) 

Therfore, some features of the clustered objects at present 

time will not strongly be changed from those existing when 

the objects just drop out from the Hubble expansion. This 

can be called a drop picture. Under this picture, some 

results of 1 inear model can also be used to expl ain ( at 

least qualitatively, observed phenomena, especially, for the 

properties which are directly related to the drop out time. 
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Fig.4 shows the evolution of the’profiles of density 

perturbations around a string loop. It is obvious1 y from 

Fiq.4 that a core-halo object can be formed by the accretion 

of the loop. The core is dominated by baryons, and the halo 

by massive neutrinos. More interesting result might be the 

flatness of the rotation curves, which are plotted in Fig.5 . 

for several masse* of the string 1 oops. The rotation 

velocity is calculated as 

v= p, hf=4Xjrp(r)ridr (23) 

It can be seen from Fig.5 that, even at the time of redshift 

z 3 5, the rotation curves already, qualitatively, owned the 

same features as observa t i ons. It means that the mass 

density in the halo is approximately proportional to x -2 . 

This is different from the pure neutrino model, in which, in 

the 1 inear approximation, the density around the loop shows 

profile of about x -‘(Bertschinger nad Watts 1988). In our 

model , the biased clustering of baryons contributes a steep 

density profile, so the total mass density of baryons and 

neutrinos will, then, distribute as the needs of a flat 

rotation velocity. If al 1 mass shells obey the relation of 

eq. (22) in their viria lization, the x-’ profile and the 

f 1 atneos of the rotation curves will probably be maintained 
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after the virialization. 

The amplitudes of the z = 0 rotation curves given by 

Fig.5 are lower than observations. According to the drop out 

picture, we should not compare the present rotation velocity 

with z - 0 curves in Fig.5, but with that of drop out time. 

Fig.6 give the rotating velocity at a present distance of 

100 Kpc from the loop as a function of redshift. The 

rotation velocity decreases with the cosmic time. We find 

from Fig.6 that the values of observed rotation velocities 

corresponds to the drop out time of about z Z3 - 10, which 

seems to be acceptable as the era of galaxy formatiom. 

As mentioned in 

biased clustering 

galaxies. The accret 

sec.3, the maximum 1 ength scale of the 

is to be about the scale of clusters of 

ion of string loops will be 

an inhomogeneity of the density ratio of 

neutrinos on scale as large as the clusters. 

might be used as an explanation of the correla t 

able to form 

baryons to 

This real t 

ion between 

the features of rotation curves of cluster galaxies and the 

galaxy’s distance from the center of the cluster. Recently, 

it has been found (Rubin et al, 1988; Whi tmore 1988) that a. 

the amp1 i tudes of rotation curves of cluster gal axier, 

especially Sa and Sb, are low compared with field galaxies 

of equivalent Hubble types and luminosities; b. in clusters, 



tend to have falling rotation curves, the inner galaxies 

while the outer ga laxies tend to have fiat or rising 

rotation curves. 
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A most possible cause of these features for cluster 

galaxy’s rotation curves is that the cluster galaxies have 

different internal dynamics compared with isol ated field 

galaxies. If the env i r onmen t within the cluster was 

responsible for the properties of the altered galaxies, then 

this might reveal itself by a variation in galaxy parameters 

as a function of distance from the cluster center. The most 

important environment parameter related to the rotation 

curves is the density ratio of baryons to darl! matter. Both 

above-en t i oned observed results seem to show a deficiency 

of dark matter in clusters compared with dark matter in 

field. In fact, observation directely showed that the II/L 

gradients of galaxies in the inner regions of clusters are 

flatter than for galaxies in the outer regions. The 

developed model has, indeed, the required properties: a. the 

baryon-to-neutrino density ratio in clusters is higher than 

that in field; b. in cluster, the ratio decreases gradul ly 

from the inner regions to the outer region. If this 

explanation is real, the cluster galaxies should form in the 

same time or even later than the time of cluster formation. 
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Finally, we should mention the influence of the motion of 

string loops on our results. As al 1 models of spherical 

accretion of loops, our model also neglects the effect of the 

peculiar velocity of I oops. This approximation becomes 

serious, because, recently, it has been shown (Bennett and 

8ouchet 1989) that the motion of string loops wil I, more or 

less, wash out the correlation of loop initial positions. 

This means that the one-loop-one-object model seems to be a 

poor approximation on the clustering of cosmic strings. 

Nevertheless, some results obtained by this approximation 

would still be reasonable even considering loop motion. With 

respect to a perturbation with length scale 1 , the time 

scale of loop motion is t *9/v v being the velocity of 
1P 1P ’ 1P 

1 oops ( and the col 1 apse time t is ‘given~by eq.(5.)‘. 
g 

Obvious1 y, 

if 
%p’ tg ’ 

clustering will not strongly be affected by 

the loop motion. In this case, loop only plays as a’ initial 

trigger of clustering. After the very short period of the 

initial up-jump (Fig.2), clustering will be dominated by 

sol f-gravi ty of neutrinos and baryons. Since baryons 

starting to collapse at fqf the condition of tip> tg is 

equivalent to a constraint 1 > (yp/c)req . When vlp= 0.5 c, 

We have (vlp/c)req- 20h -’ Mpc. Therefore, the conclusions 

devel oped here related to length scales of about or 1 argw 

than that of clusters of galaxies would qua1 i tatively be 

maintained under the influence of loop motion. 
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This rwised version is done after the Beijing massaccre 

at June 1989, which forces one of us (Fang) to become a 

temporary refugee. He wishes to deeply think all persons who 

help him to stil I be able to work on astrophysics in this 

hard time. We also wish to think Dr. Schaef f er for his 
. 

val uabl e suggestion. 
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Figure Cap t ions 

Fig. 1 The evolution of Four i er component 5 of density 

perturbations around a cosmic string loop against conformal 

time 5 , where the sol id line describes the baryonic 

component and dashed line the neutrino component. The rest 

mass of qeutrinos is taKen to be m = 100 QV in <a.) and 10 

eU in (b). The conformal wavenumbers correspond respectively 

to $=o.m, 1.59, 6.31, 25.1, 100, 398, 1590. 

Fig.2 The evolution of the baryonic (solid) .and the neutrino 
-4 

(dashed) density perturbations at the distances x = 10 rhl 

(subscript 1) and 
-I 

10 ‘en (subscript 2) from the string 

loop, where A and B denote, respectively, m =lOO eU and 10 

ev. 

Fig.3 The baryonic core radius as functions of redshift. The 

neutrino mass is taKen to bc 100 eU (solid) and 10 QV 

(dashed) . The numbers on the lines are the string loop mass 

in the unit of 10 MO- 

Fig.4 The baryonic (solid) and neutrino (dashed) density 

pQrturbation prof i 1 es around the string loop at different 

cosmic times. (a) m Y = 100 QV; (b) m,, +i 10 eV. 
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Fig.5 Rotation curves of the object formed by the accretion 

of string loop at the times of redshifts z = 0.04 (solid) 

and z = 5.16 (dashed). the numbers on the curves are the 

mass of the loop. 

Fig.6 The evolution of rotating velocity at a present 

distance ,100 Kpc from the loop. The rest mass of neutrinos 

is taken to be 100 eV (solid) and 10 eV (dashed) . The 

numbers on the curves are the loop mass in unit of 10 Ma. 
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